Planar Graph Euler＇s Formula DCEL

Gil Ben－Shachar
Based on slides by
Yufei Zheng－郑羽霏

Planar Graph

© Definition - A planar graph is a graph that can be embedded in the plane

Can be drawn on a plane in such a way that its edges intersect only at their endpoints

In some pictures, a planar graph may have crossing edges

Planar Graph

© Fáry's Theorem - every simple planar graph admits an embedding in the plane such that all edges are straight line segments which don't intersect.
Simple graph - undirected, no graph loops(self edges), no parallel edges
© Tutte Embedding - the embedding of 3-vertex-connected planar graphs with good properties.

Euler's Formula

Notations

v - number of vertices
e-number of edges
f - number of faces
Euler's Formula (for finite, connected planar graph)

$$
v-e+f=2
$$

$$
\begin{aligned}
& v=5 \\
& e=7 \\
& f=4
\end{aligned}
$$

$v-e+f=2-$ Proof by induction on F

(0) Base case: $f=1$ acyclic connected graph - Tree

$$
\begin{aligned}
& e=v-1 \\
& v-e+f=v-(v-1)+1=2
\end{aligned}
$$

$V-e+f=2-$ Proof by induction on F

© Induction step: Consider a graph with f^{\prime} faces, v^{\prime} vertices and e^{\prime} edges.
Assume that the property holds for $f=f^{\prime}-1$
a. Choose an edge that is shared by 2 different faces and remove it, the graph remains connected.
b. This removal decreases both the number of faces and edges by one, on the new graph we get:

$$
\begin{gathered}
v-e+f=v^{\prime}-\left(e^{\prime}+1\right)+f^{\prime}+1=2 \\
\Rightarrow v^{\prime}-e^{\prime}+f^{\prime}=2
\end{gathered}
$$

Applications of Euler's Formula

© Exercises:
© Show that for any planar graph:

- Have at most $3 V-6$ edges.
- Have a vertex of degree at most 5 .

Applications of Euler's Formula Pick's Theorem
© What is the area of this polygon?

© Let us begin with a simpler case, what is the area of a triangle containing no inner points:

Applications of Euler's Formula Pick's Theorem
(0) Lemma: the area of a triangle containing no inner points is $\frac{1}{2}$.

Applications of Euler's Formula-

 Pick's Theorem(O) A basis of \mathbb{Z}^{2} is a pair of vectors e_{1}, e_{2} such that

$$
\mathbb{Z}^{2}=\left\{\lambda_{1} e_{1}+\lambda_{2} e_{2} \mid \lambda_{1}, \lambda_{2} \in \mathbb{Z}\right\}
$$

Lemma: If $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}$ is a basis of \mathbb{Z}^{2} then $\operatorname{det}(A)= \pm 1$ where $A=\left(\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right)$
© Proof:
There exists a matrix Q s.t. $A \mathrm{Q}=I$
$\Rightarrow \operatorname{det}(A) \operatorname{det}(Q)=1$
All the numbers are integers, hence the result.

Applications of Euler's Formula- Pick's Theorem

(o) Lemma: If the triangle created by a pair of vectors contains no lattice points, this pair is a basis of \mathbb{Z}^{2}.

Corrolary: The area of a lattice triangle containing no inner points is $\frac{1}{2}$.

Applications of Euler's Formula- Pick's Theorem

Pick's theorem: The area of a polygon Q, with integral vertices is given by

$$
A(Q)=\mathrm{n}_{i n t}+\frac{1}{2} n_{b d}-1
$$

Where $\mathrm{n}_{\text {int }}$ is the number of interior points and $n_{b d}$ are the numbers of boundary points in the interior.

$$
\begin{gathered}
n_{i n t}=7 \\
n_{b d}=5 \\
A=8.5
\end{gathered}
$$

Applications of Euler's Formula- Pick's Theorem

Number of triangles: $f-1$
Number of boundary edges: $e_{b d}$
Number of interior edges: $e_{i n t}$

$$
\begin{gathered}
3(f-1)=2 e_{i n t}+e_{b d} \\
\Rightarrow f=2(e-f)-e_{b d}+3 \\
=2(n-2)-n_{b d}+3 \\
=2 n_{i n t}+n_{b d}-1
\end{gathered}
$$

$$
A(Q)=\frac{1}{2}(f-1)=n_{\text {int }}+\frac{1}{2} n_{b d}-1
$$

DCEL - Doubly Connected Edge List

© Given a planar graph we are looking for a DS to represent the graph.
© We want to enable (for example):
Traverse all edges incident to a vertex v
Traverse all edges bounding a face
Traverse all faces adjacent to a given face otc...

DCEL - Doubly Connected Edge List

© Complexity of a subdivision $=V+E+F$
© DCEL - A data structure for representing an embedding of a planar graph in the plane
Only consider: every edge is a straight line segment

- Recall Fáry's Theorem
© DCEL consists of 3 collections of records: Vertices, Edges, Faces

DCEL - A Record for Vertex

OVertex - the embedding of a node of the graph
OCoordinates(v) - coordinates of vertices
OIncidentEdge(v)
Incident:
an edge and its endpoints
a face and an edge on its boundary
a face and a vertex of its boundary
Points to only one edge

Vertex	Coordinates	IncidentEdge
v_{1}	$(0,4)$	$\vec{e}_{1,1}$
v_{2}	$(2,4)$	$\vec{e}_{1,2}$
v_{3}	$(2,2)$	$\vec{e}_{2,1}$
v_{4}	$(1,1)$	$\vec{e}_{2,2}$

DCEL - A Record for Edge

©Half-edges - different sides of an edge
Bounds only 1 face
© Origin(e)
Orientation - the face it bounds lies to its left

- ID of a vertex structure
© Twin(e) - the twin edge of e in the opposite direction
OIncidentFace(e)
© $\operatorname{Next}(\mathrm{e}) \& \operatorname{Prev}(\mathrm{e})$
next and previous edge on the boundary of IncidentFace(e).

DCEL A Record for Edge

Half-edge Origin Twin IncidentFace Next Prev

$\vec{e}_{1,1}$	v_{1}	$\vec{e}_{1,2}$	f_{1}	$\vec{e}_{4,2}$	$\vec{e}_{3,1}$
$\vec{e}_{1,2}$	v_{2}	$\vec{e}_{1,1}$	f_{2}	$\vec{e}_{3,2}$	$\vec{e}_{4,1}$
$\vec{e}_{2,1}$	v_{3}	$\vec{e}_{2,2}$	f_{1}	$\vec{e}_{2,2}$	$\vec{e}_{4,2}$
$\vec{e}_{2,2}$	v_{4}	$\vec{e}_{2,1}$	f_{1}	$\vec{e}_{3,1}$	$\vec{e}_{2,1}$
$\vec{e}_{3,1}$	v_{3}	$\vec{e}_{3,2}$	f_{1}	$\vec{e}_{1,1}$	$\vec{e}_{2,2}$
$\vec{e}_{3,2}$	v_{1}	$\vec{e}_{3,1}$	f_{2}	$\vec{e}_{4,1}$	$\vec{e}_{1,2}$
$\vec{e}_{4,1}$	v_{3}	$\vec{e}_{4,2}$	f_{2}	$\vec{e}_{1,2}$	$\vec{e}_{3,2}$
$\vec{e}_{4,2}$	v_{2}	$\vec{e}_{4,1}$	f_{1}	$\vec{e}_{2,1}$	$\vec{e}_{1,1}$

DCEL - A Record for Face

© OuterComponent(f) A pointer to an half-edge on the outer boundary of face f .
© InnerComponents(f) -
A list contains for each hole in f_{1} the face f a pointer to some half-edge on the boundary of the hole.

Face OuterComponent InnerComponents

f_{1}	nil	$\vec{e}_{1,1}$
f_{2}	$\vec{e}_{4,1}$	nil

DCEL - Further Facts

© Amout of Storage - linear in the complexity of the subdivision
vertices and edges - linear in V+E
faces
OuterComponent - linear in F
InnerComponent lists- linear in E

© Special cases

- For Isolated vertices in a face, store pointers
- For additional information, add attributes

DCEL - Exercises

© Traverse all edges incident to a vertex v $\mathrm{e}_{2}=\operatorname{Next}\left(\operatorname{Twin}\left(\mathrm{e}_{1}\right)\right)$
© Why isn't the Destination field of the Edge structure needed?

Origin(Twin(e))

